
Exercices combustion 4eme

Vertical:

- Transformation chimique entre le dioxygène et un combustible avec transfert d'énergie thermique.
- Grandeur physique qui se conserve lors de la transformation chimique.

Horizontal:

- Corps dont la quantité augmente lors d'une transformation chimique.
- Corps dont la quantité diminue au cours d'une combustion.
- 5. Lors de sa combustion, le carbone en est un exemple.

Faire bruler du fer!

On réalise la combustion du fer dans le dioxygène de l'air. Se forment alors uniquement des petites boules grises : de l'oxyde de fer.

- 1. Quels sont les réactifs mis en jeu dans cette combustion?
- 2. Quel est le produit?
- 3. Écris le bilan de cette transformation chimique.
- 4. 8,4 g de paille de fer brulent avec 3,2 g de dioxygène. Quelle est la masse d'oxyde de fer obtenue?

Paille de fer dans le flacon Paille de fer dans le flacon Boules grises d'oxyde de fer d'oxyde de fer de l'expérience Début de l'expérience

Analyse une expérience.

COMPÉTENCE Interpréter des résultats

Dans les briquets « tempête », le combustible utilisé est du butane (gaz qui brule en donnant les mêmes produits que le méthane). On réalise l'expérience schématisée ci-dessous.

- La combustion réalisée avec ces briquets est-elle complète ou incomplète? Justifie.
- Quels sont les produits formés? Justifie.
- 3. Écris le bilan de cette transformation.

Le magnésium.

Le magnésium est très utilisé pour les feux d'artifice et on le retrouve dans la composition de la poudre qui servait autrefois à faire les flash pour les photographies. Lors de cette réaction, le magnésium Mg brule dans le dioxygène pour former de l'oxyde de magnésium MgO.

- 1. Quels sont les réactifs?
- 2. Quel est le produit?
- 3. Écris le bilan de la réaction.
- 4. Écris l'équation de réaction.

Combustion de carbone.

La combustion de 6 g de carbone dans du dioxygène donne 22 g de dioxyde de carbone.

- 1. Écris le bilan de cette transformation.
- Calcule la masse de dioxygène qui a été consommée.